The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X 0 X 0 X^2+X X^2 X^3+X^2+X X^3+X^2 X 0 X^2+X 0 X^3+X^2+X X^2 X X^3+X^2 X 0 X^2+X 0 X^3+X^2+X 0 X^2+X 0 X^3+X^2+X X^2 X X^3+X^2 X X^2 X X^3+X^2 X X^3 X^3+X^2+X X^3 X^2+X X^3+X^2 X^3+X X^2 X^3+X X^3 X^3+X^2+X X^3 X^2+X X^3+X^2 X^3+X X^2 X^3+X X^3 X^3+X^2+X X^2 X^3+X X^3 X^2+X X^3+X^2 X^3+X X^3+X^2+X X^3 X^2 X^3+X X^3 X^2+X X^3+X^2 X^3+X 0 X^2+X X^3+X^2 X^3+X X^3+X^2+X X^3+X^2+X 0 0 X^3+X^2 0 X^3+X^2 X^2 0 X^2 X^3 X^3 X^2 X^3+X^2 X^2 X^3+X^2 X^3 X^3 0 0 X^3+X^2 X^2 X^3 X^3 X^2 X^3+X^2 X^2 X^2 0 X^3 X^3+X^2 X^3+X^2 X^3 0 X^3 X^3 X^2 X^3+X^2 X^3+X^2 X^2 0 0 0 0 X^3+X^2 X^2 X^2 X^3+X^2 X^3 X^3 X^3 X^3 X^3 X^3 X^2 X^3+X^2 X^2 X^2 0 0 0 0 X^3+X^2 X^2 X^3+X^2 X^3+X^2 0 0 0 X^3 X^2 X^3+X^2 0 0 0 X^3 X^3 0 X^3 X^3 0 X^3 0 0 X^3 X^3 X^3 0 X^3 0 X^3 X^3 X^3 0 X^3 X^3 0 0 0 X^3 0 0 0 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 0 0 0 X^3 X^3 0 0 generates a code of length 70 over Z2[X]/(X^4) who´s minimum homogenous weight is 68. Homogenous weight enumerator: w(x)=1x^0+87x^68+128x^69+592x^70+128x^71+86x^72+1x^76+1x^136 The gray image is a linear code over GF(2) with n=560, k=10 and d=272. This code was found by Heurico 1.16 in 0.453 seconds.